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Sitting for prolonged periods of time impairs people’s health. Prior
research has mainly investigated sitting behavior on an aggregate
level, for example, by analyzing total sitting time per day. By con-
trast, taking a dynamic approach, here we conceptualize sitting
behavior as a continuous chain of sit-to-stand and stand-to-sit
transitions. We use multilevel time-to-event analysis to analyze the
timing of these transitions. We analyze ∼30,000 objectively mea-
sured posture transitions from 156 people during work time. Results
indicate that the temporal dynamics of sit-to-stand transitions differ
from stand-to-sit transitions, and that people are quicker to switch
postures later in the workday, and quicker to stand up after having
been more active in the recent hours. We found no evidence for
associations with physical fitness. Altogether, these findings pro-
vide insights into the origins of people’s stand-up and sit-down de-
cisions, show that sitting behavior is fundamentally different from
exercise behavior, and provide pointers for the development of
interventions.

sedentary behavior | time-to-event analysis | survival analysis | fatigue |
occupational health

In modern society, most people spend large parts of their
waking time sitting, especially when they are at work (1–4).

Numerous studies have demonstrated that sitting for extended
periods of time contributes to mental and physical health con-
ditions, such as depression, stress, obesity, diabetes, cardiovas-
cular diseases, cancer, and all-cause mortality (5–7). Problematically,
the detrimental health consequences of sitting appear present
even in those who otherwise meet recommended levels of daily
physical activity (6). Therefore, to improve society’s health and
well-being, it is vital to change people’s sitting behavior.
So far, research into sitting behavior has yielded crucial in-

sights, such as that, for working adults, extensive sitting time mostly
accumulates during work time (8, 9), and that sitting directly in-
fluences metabolism, bone mineral content, and vascular health
(10, 11). However, prior research on sitting behavior has typically
examined sitting on an aggregate level. That is, typically, summary
characteristics of sitting behavior (e.g., total sitting time, average
duration of sitting episodes) are used as primary outcomes (12).
This traditional approach conceptualizes sitting behavior as a static
property of a person—or at best, as a static property of a person on
a specific day. This approach parallels the mainstream approach
that is used to study physical exercise, where volume of exercise is
usually expressed and investigated as total hours or minutes per
week. Yet, when used on sitting behavior, such a static approach
overlooks the fact that sitting is a highly dynamic phenomenon that
is characterized by a continuous chain of transitions between sitting
and standing. Here, we examine sitting behavior on a more gran-
ular level: the level of individual sit-to-stand and stand-to-sit
transitions.
Relative to the traditional approach, our dynamic approach

has three main advantages. First, our approach provides a sen-
sitive method to capture the variability that is characteristic of
natural sitting behavior. On an average day, people transition
between sitting and standing between ∼70 and ∼140 times; also,

people may stay in a single posture for time periods ranging from
a few seconds to several hours (13). These substantial variations
are presumably also present when people’s sitting behavior is
strongly constrained by the physical and social context, such as
when people are paid to work behind a desk. That is, in such
constrained contexts, people still make short but frequent posture
switches, for example, stretching their legs, visiting the bathroom,
or grabbing coffee (14, 15). So, examining sitting behavior on a
person level or day level does not provide an ecologically valid
representation of the time scale on which sitting behavior occurs
(see also ref. 16). Recent studies support the potential importance
of acknowledging dynamic variation in sitting. That is, the time
people spend in prolonged, uninterrupted periods of sitting (>30
min), rather than total sitting time, may be the main cause of
sitting-related health problems (17, 18). Our approach can be used
to gain unique and detailed insight into the dynamic variations in
sitting, and therefore into the specific unhealthy characteristics of
sitting behavior.
Second, our dynamic approach allows us to examine a range of

candidate predictors to help explain sitting behavior. Examining
individual sit-to-stand and stand-to-sit transitions will yield more
precise insights into people’s decision-making processes that
drive their sit-to-stand and stand-to-sit transitions. Moreover,
going beyond the traditional approach, a more granular investigation
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of sitting behavior allows us to examine candidate predictors
whose values vary throughout the day. In this research, we tested
several candidate predictors: 1) We examined time of day to ex-
amine natural circadian fluctuations in sit-to-stand and stand-to-sit
transitions. Specifically, later during the workday, people tend to
experience higher levels of mental fatigue (19, 20); thus, examin-
ing time of day may provide an insight into how mental fatigue
affects sitting behavior. 2) We examined people’s physical effort
expenditure in recent hours, as recent effort is known to affect
other health behaviors (21, 22). For example, after expending
effort during the workday, people are less motivated to exercise in
the evening (23). 3) We examined individual differences in physical
fitness, as people who are less physically fit likely perceive higher
energetic costs of standing up when sitting (24). By examining
these candidate predictors, our dynamic approach opens the door
to a more detailed understanding of the psychological processes
that drive sitting behavior (25).
Third, our dynamic approach provides a way of analyzing data

from modern wearable technology (in our case, the activPAL
monitor). Such technology records all individual sit-to-stand and
stand-to-sit transitions that people make, with measurement
precision in seconds. We capitalize on the richness of such time
series data by modeling individual posture transitions. For this
purpose, we use multilevel time-to-event analysis.
Time-to-event analysis, also known as survival analysis, is used

to examine the timing of events—or transitions from one state to
another (26, 27). Originally developed to predict the timing of
death (27), time-to-event analysis has subsequently been used in
other fields of study, for instance, to predict the timing of relapse
into substance abuse (28) or to predict the timing of emotion
expression in children (26, 29). To the best of our knowledge,
time-to-event analysis has not yet been used to examine deter-
minants of health behavior. In time-to-event analysis, researchers
estimate the hazard of an event, which refers to the conditional
(i.e., given that the event has not happened yet) probability that an
event occurs per unit of time. As we examine events that can
happen more than once within each individual (i.e., sit-to-stand
and stand-to-sit transitions), we use a multilevel framework to
model random variability in the timing of sit-to-stand and stand-
to-sit transitions between individuals (i.e., events nested within
individuals; refs. 26 and 29). Specifically, using multilevel time-
to-event analysis, we were able to examine predictors of 1) the
hazard of standing up when sitting and 2) the hazard of sitting
down when standing.
For working adults, overall unhealthy sitting behavior is mostly

accumulated during work time (2). Thus, in this paper, we lim-
ited our investigation to sitting behavior during work time. We
analyzed ∼30,000 objectively measured posture transitions of
156 UK-based employees from various worksites, who per-
formed mainly desk-based work. We used a split-samples cross-
validation procedure (30, 31). Specifically, prior to looking at
the data, we randomly split the data into two samples of equal
size: A training sample (n = 79; 7,316 sit-to-stand and 7,263
stand-to-sit transitions) and a testing sample (n = 77; 7,216
sit-to-stand and 7,158 stand-to-sit transitions). We used the train-
ing sample for data exploration and fine-tuning of analyses and
analytical decisions. After this, we preregistered our analysis plan
for the testing sample on the Open Science Framework (https://osf.
io/rbaqx/?view_only=da51924da62242d7a5808ede6192561a). As
the present study uses timing of sit-to-stand and stand-to-sit
transitions as the primary outcome, and as we could reasonably
expect associations with predictors in different directions, we
anticipated a range of different study outcomes. Thus, rather
than specifying one-sided hypotheses, we preregistered 1) our
research questions, 2) a detailed analysis plan, and 3), for all
plausible outcomes, what our interpretation would be. Unless
otherwise specified, in this paper, we report results from the
preregistered analyses on the testing sample, along with the

preregistered interpretation. We used this split-samples pro-
cedure because it diminishes the chance of reporting false posi-
tives through preregistration; at the same time, the training sample
offered an opportunity to explore the data, thus decreasing the
probability of overlooking potentially relevant predictors (30, 31).

Results
Standing Up versus Sitting Down. First, we estimated the baseline
probability of standing up when sitting versus sitting down when
standing, and whether these develop differently over time. To
investigate whether sit-to-stand versus stand-to-sit transitions
were qualitatively different, we tested whether the type of tran-
sition predicted the hazard of posture transition, and whether the
hazard of standing up when sitting and the hazard of sitting down
when standing developed differently over time.
Results are presented in Table 1. Fig. 1 displays the baseline

survival function (i.e., the proportion of events that has not
happened yet as a function of time) of stand-to-sit transitions and
sit-to-stand transitions separately. There was a significant effect of
type of transition, which suggested that participants were 5.4 times
more likely to sit down per minute of standing than to stand up per
minute of sitting. Median survival times indicated that, 50% of the
time, participants sat down within 1.8 min of standing and stood
up within 5.6 min of sitting. In other words, people were quicker to
select sitting over standing, i.e., they were quicker to choose the
behavioral option that costs the least energy (32) and yields most
comfort in the context of desk-based working (33). These low
median survival times suggest that participants were often rather
quick to switch back and forth between standing and sitting. On
the other hand, Fig. 1 suggests that, consistent with previous re-
search (4), 15% of sitting episodes lasted longer than 30 min. In
fact, in our sample, 88% of participants had three or more long
episodes of uninterrupted sitting on at least one single workday.
Thus, despite the relatively large number of short sitting and
standing episodes, unhealthy sitting behavior at the workplace is
abundantly present.
Going beyond previous work, the significant Transition ×

Event time interaction suggests that sit-to-stand and stand-to-sit
transitions have distinct associated probabilities and a different
development over time. Specifically, the hazard of sitting down
when standing was relatively high in the first minutes of standing,
and decreased quickly over the time course of a standing epi-
sode. In other words, most of the time, when people were active,
they quickly sat down again. Conversely, the hazard of standing
up when sitting was relatively low in the first minutes of sitting,
and decreased gradually over the time course of a sitting episode
(SI Appendix, Fig. S1). This means that, once participants remained
seated beyond the first minutes, they were likely to remain seated
for a long, uninterrupted amount of time.

Time of Day. We examined time of day as a predictor of the
hazard of standing up when sitting and the hazard of sitting down
when standing (Table 1). Fig. 2 displays estimated survival
functions for sit-to-stand and stand-to-sit transitions for a typical
beginning (9 AM) and end (5 PM) of a workday. With each hour
increase in time of day, participants were 4% more likely to stand
up per minute of sitting, and 3% more likely to sit down per
minute of standing. Estimated median survival times for 9 AM
indicated that, 50% of the time, participants stood up within
7.1 min of sitting and sat down within 2.0 min of standing. At 5
PM, estimated median survival times were 4.4 min and 1.6 min,
respectively. This result suggests that, later in the day, when fa-
tigue had likely set in (19, 20), participants were quicker to
switch back and forth between sitting and standing.

Activity in Last 5 h.We then examined recent activity, specifically,
activity in the last 5 h, as a predictor of the hazard of standing
up when sitting and the hazard of sitting down when standing
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(Table 1). We chose a 5-h time window, based on previous
studies on muscle fatigue that show that physical discomfort
tends to set in within 2 h to 5 h of activity (34, 35). Fig. 2 displays
the estimated survival functions for 45 min (15%; ∼−1 SD)
versus 150 min (50%; ∼+1 SD) of activity in the last 5 h. With
each additional minute that participants had been physically
active in the last 5 h, they were 0.17% more likely to stand up per
minute of sitting, and 0.21% less likely to sit down per minute of
standing. We estimated median survival times for low activity in
the last 5 h (i.e., 45 min of activity in the last 5 h), and for high
activity in the last 5 h (i.e., 150 min of activity in the last 5 h). Our
estimates suggest that, when participants had been relatively
inactive in the last 5 h, they stood up within 6.7 min of sitting,
50% of the time. However, when participants had been relatively
active, they stood up within 4.1 min of sitting, 50% of the time.
Also, when participants had been relatively inactive in the past 5
h, they sat down within 1.5 min of standing, 50% of the time.
However, when participants had been relatively active, they sat
down within 2.5 min of standing, 50% of the time. So, after
periods of more standing (i.e., being active, exerting more physical
effort), people were more likely to stand, and less likely to sit.

Individual Differences in Physical Fitness. Finally, we explored as-
sociations between individual differences related to physical fit-
ness and the hazard of standing up when sitting and the hazard of
sitting down when standing. We assumed that people who have
higher Body Mass Index (BMI), are older, and/or are less active
in their leisure time are less physically fit. We conducted a priori
sensitivity analyses (SI Appendix, SI Text) to determine the mag-
nitude of effects we could detect with a power of 1 – β = 0.80.
Results indicated that we could detect medium to large effect
sizes. However, based on exploratory analyses on the training
sample, we expected only small effects, if any. Therefore, we de-
cided to consider the analyses regarding individual differences
exploratory, and to conduct these analyses on the full sample
(training sample + testing sample), in order to provide the most
precise effect size estimates that we can at this point, given the
available data. There were some missing values on the predictor
variables (see Materials and Methods).
Results (Table 2) indicated that none of the indicators of

physical fitness were related to the hazard of standing up or to
the hazard of sitting down. These results suggest that the timing
of standing up while sitting and sitting down while standing does
not depend on one’s level of physical fitness. It is important to

note, however, that these tests were exploratory and that statis-
tical power for these tests was relatively low. Therefore, more
research into the associations between physical fitness and sitting
patterns is necessary before drawing firm conclusions.

Discussion
We investigated sitting behavior as a continuous chain of
sit-to-stand and stand-to-sit transitions, using multilevel time-to-
event analysis. In line with previous findings, people in our study
switched often and quickly between sitting and standing (within
minutes; ref. 13), but also engaged in a considerable amount of
prolonged, unhealthy sitting episodes at work (4). Extending
previous research, we showed that sit-to-stand and stand-to-sit
transitions are different both in probability and timing. This

Table 1. Results of the shared frailty Cox regression models for the baseline hazard of
sit-to-stand and stand-to-sit transitions and the predictors time of day and activity in last 5 h

Predictor Estimate df SE HR 95% CI of HR

Model 1: Transition and transition × event time predicting the hazard of changing posture
Random effect θ 0.194*** 74.34
Transition† 1.69*** 1 0.026 5.40 [5.128, 5.685]
Transition† × event time −0.094*** 1 0.002 0.91 [0.906, 0.914]

Model 2: Time of day predicting the hazard of standing up when sitting
Random effect θ 0.303*** 73.74
Time of day 0.035*** 1 0.005 1.036 [1.026, 1.046]

Model 3: Time of day predicting the hazard of sitting down when standing
Random effect θ 0.514*** 74.62
Time of day 0.033*** 1 0.005 1.034 [1.024, 1.044]

Model 4: Activity in last 5 h predicting the hazard of standing up when sitting
Random effect θ 0.153*** 69.35
Activity in last 5 h 0.002*** 1 <0.001 1.002 [1.001, 1.002]

Model 5: Activity in last 5 h predicting the hazard of sitting down when standing
Random effect θ 0.228*** 71.11
Activity in last 5 h −0.002*** 1 <0.001 0.998 [0.997, 0.999]

df = degrees of freedom, SE = Standard Error, HR = Hazard Ratio, CI = Confidence Interval. ***P < 0.001.
†Transition was coded as 0 = sit-to-stand vs. 1 = stand-to-sit.
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Fig. 1. Baseline survival functions for the hazard of standing up when sit-
ting and the hazard of sitting down when standing separately.
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underscores the relevance of zooming in on these individual
transitions when investigating sitting behavior. Adopting our
dynamic approach, we found that people were quicker to switch
postures later during the workday compared to earlier during the
workday. Moreover, when people were more active (nonsitting)
in the previous hours, they were quicker to stand up when sitting
and slower to sit down when standing. Finally, whereas previous
findings indicate that people who are older, have a higher BMI,
or engage in less physical activity in their leisure time generally
sit more and longer (2, 36), we found no evidence that the timing
of standing up and sitting down depends on individual differ-
ences in physical fitness.
Our findings yield several insights into the nature of sitting and

standing behavior during the workday. First, our findings suggest
that sitting behavior is critically different from other health be-
haviors. When people feel fatigued at the end of the day, they are
generally more prone to engage in unhealthy behaviors, such as
unhealthy eating or skipping exercise sessions (21, 23, 37–39). By
contrast, our findings regarding time of day suggest that, when
people feel fatigued at the end of the day, they engage in healthier
sitting patterns—characterized by quicker posture switching.

Although this finding is somewhat counterintuitive, it is in line
with a recent account of fatigue, which suggests that fatigue
functions as a signal to stop the current task and switch to another
(22, 40). Specifically, our findings are consistent with the idea that,
later in the day, people feel more fatigued (and possibly more
restless and less concentrated); as a result, they more quickly
change posture while working (e.g., stand up while reading a
document), more quickly switch to a different work task that in-
volves a change in posture (e.g., decide to print some documents),
and/or more quickly take a short break that involves a change in
posture (e.g., walk to the coffee machine).
In a similar vein, our findings on activity in the last 5 h also

contradict previous findings on other health behaviors. That is,
previous research suggests that people are less motivated to
engage in active behavior after they have exerted effort (e.g., people
are less motivated to go to the gym after an effortful workday; refs.
21–23). In contrast, our findings show that people display fairly
stable sitting and standing patterns over a timeframe of several
hours. Thus, our findings imply that previous effort exertion does
not necessarily diminish future effort exertion, at least not in
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Fig. 2. Estimated survival functions based on model predictions for indicative values of time of day and activity in last 5 h. (A) The estimated survival function
for the hazard of standing up when sitting for 9 AM vs. 5 PM time of day, (B) the estimated survival function for the hazard of sitting down when standing for
9 AM vs. 5 PM time of day, (C) the estimated survival function for the hazard of standing up when sitting for high vs. low activity in the last 5 h, and (D) the
estimated survival function for the hazard of sitting down when standing for high vs. low activity in last 5 h. The values for high (50%; 150 min) and low (15%;
45 min) activity in last 5 h roughly correspond to −1 SD and +1 SD of the mean.
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the context of light physical activity (i.e., sitting versus standing
and walking).
Thus, where prior research has aimed at understanding sitting

behavior using the same psychological models that proved useful
for other health behaviors, physical activity in particular (41), our
findings suggest that sitting behavior is not necessarily compa-
rable to these other health behaviors. The fundamental differ-
ences in energy expenditure, frequency, duration, and deliberate
processing between physical activity and sitting behavior (42)
may contribute to these observations. This emphasizes that, to
target sitting behavior, practitioners cannot simply follow inter-
vention strategies that have proven to successfully boost physical
activity and exercise—rather, they have to consider the poten-
tially unique nature of sitting behavior.
Second, our findings highlight that our dynamic approach to

sitting behavior, along with the use of multilevel time-to-event
analysis, complements and goes beyond the traditional approach
that is used to understand sitting behavior. We demonstrated
that a dynamic approach is useful when attempting to outline the
psychology of sitting (25), that is, when attempting to uncover
the decision-making processes that drive sit-to-stand and stand-
to-sit transitions. However, we anticipate that other research
fields that take an interest in the antecedents of sitting (e.g.,
environmental psychology, industrial design, medicine, and epi-
demiology) can also benefit from analyzing sitting patterns on
the level of sit-to-stand and stand-to-sit transitions, making use
of time-to-event analysis.
To date, numerous interventions to decrease sitting time have

been designed and tested, such as height-adjustable desks (43),
and online tailored advice on how to reduce and break up sitting
(44). Although these interventions indeed reduce sitting time in
the short term, the benefits seem to wear off over a few months
(45, 46). A plausible explanation for this decline is that, even
though theory-based interventions are known to be more effective
(47), the majority of existing interventions that aim to change
sitting behavior lack a theoretical basis (45). As our dynamic ap-
proach can be used to unravel the decisions that drive sitting be-
havior, we expect that our approach will substantially contribute to
the theoretical understanding of sitting behavior—and, thus, help
provide a solid basis for designing interventions. In particular, to
effectively reduce the number of prolonged, uninterrupted periods
of sitting, interventions should aim to accelerate people’s deci-
sions to stand up when sitting. Besides gaining insights into po-
tential intervention targets, exploring the temporal dynamics of

sit-to-stand and stand-to-sit transitions also provides ideas on
when interventions are most necessary. Our findings show that,
later during the workday, people naturally engage in healthier
sitting patterns. This implies that interventions to change people’s
sitting behavior are most needed at the beginning of the workday.
With our dynamic approach, future research can isolate the

determinants of sit-to-stand and stand-to-sit decisions—and,
thus, help identify targets for interventions that may otherwise be
overlooked. A limitation of the current study is that we did not
directly assess psychological states, such as mental fatigue, with
self-report measures. Thus, in our view, it would be worthwhile
for future research to combine our dynamic approach with an
experience sampling procedure. This combined design would
allow researchers to study how the impact of psychological states,
including fatigue, varies over the course of a day (e.g., using
models that include time-varying predictors; refs. 48 and 49).
Such research should aid the development of interventions that
target specific decision-making processes at specific moments in
time (e.g., just-in-time adaptive interventions; ref. 50).
Our results suggest that unhealthy sitting behavior is a general

problem concerning many employees, not only less physically fit
or older people. Conversely, we observed that people’s sitting
patterns are most unhealthy at the beginning of a new workday,
when employees plausibly still feel fresh and fit. Sitting thus seems
to be a ubiquitous consequence of present-day work. Building on
our findings, along with the accumulating evidence on the negative
consequences of sitting, one could argue that unhealthy sitting
patterns should be considered a serious occupational risk for de-
veloping disease (see also ref. 51). Regulation of other known
occupational risks, such as exposure to loud noises, exposure to
chemicals, or working nightshifts, has long been a formal re-
sponsibility of employers (“duty of care”; ref. 52). This line of
reasoning raises the question of who should take responsibility for
changing employees sitting behavior, in order to protect and im-
prove our workforce’s physical health and mental wellbeing. Ul-
timately, gaining insights into the mechanisms that predict sit-to-
stand and stand-to-sit transitions during work time will provide
practical starting points for both employers and employees to
adopt and apply interventions that will help employees engage in
healthier sitting patterns during work.

Materials and Methods
We used existing data collected by the Research Institute of Sport and Ex-
ercise Sciences at Liverpool John Moores University, United Kingdom. The

Table 2. Results of the shared frailty Cox regression models for the predictors BMI, age, and leisure time activity level

Predictor Estimate df SE HR 95% CI of HR

Model 1: BMI predicting the hazard of standing up when sitting
Random effect θ 0.455*** 90.86
BMI 0.070 1 0.072 1.073 [0.932, 1.235]

Model 2: BMI predicting the hazard of sitting down when standing
Random effect θ 0.477*** 90.63
BMI 0.038 1 0.102 1.039 [0.850, 1.270]

Model 3: Age predicting the hazard of standing up when sitting
Random effect θ 0.371*** 144.20
Age 0.014 1 0.060 1.014 [0.901, 1.142]

Model 4: Age predicting the hazard of sitting down when standing
Random effect θ 0.458*** 144.70
Age <0.001 1 0.067 1.000 [0.877, 1.141]

Model 5: Leisure time activity level predicting the hazard of standing up when sitting
Random effect θ 0.181*** 53.24
Leisure time activity level −0.012 1 0.066 0.988 [0.867, 1.125]

Model 6: Leisure time activity level predicting the hazard of sitting down when standing
Random effect θ 0.381*** 54.34
Leisure time activity level −0.026 1 0.082 0.975 [0.829, 1.146]

df = degrees of freedom, SE = Standard Error, HR = Hazard Ratio, CI = Confidence Interval. ***P < 0.001.
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dataset included objectively measured, continuous activity data of 167
working adults from various worksites in the United Kingdom.

Participants and Procedure. The full sample (n = 167) was combined out of
four different samples that were collected for different research projects.
Data from sample A (n = 14) were collected from university desk workers
(not academic staff or technicians), data from sample B (n = 70) were col-
lected from call agents from two different contact centers, and data from
sample C (n = 61) and sample D (n = 22) were collected from working adults
without specific criteria for job role or sitting time. In each sample, the
procedure for data collection was the same. All participants first provided
demographics and other personal characteristics; anthropometric assess-
ment was conducted by a trained researcher. Next, participants were
instructed to continuously wear a thigh-mounted activPAL monitor (PAL
Technologies) for seven consecutive days. In addition, participants recorded
the times they started and finished work each day in a log book. For all
samples, study procedures were approved by the Liverpool John Moores
University Ethics Committee. The samples did not significantly differ in the
hazard of standing up when sitting (P = 0.991) and in the hazard of sitting
down when standing (P = 0.999).

Data from participants for whom no work time data were available were
excluded, leaving n = 156 of the full sample, and n = 77 of the testing
sample. Participants in the full sample had an average age of 33.92 y (SD =
11.47 y), a BMI of 27.84 (SD = 6.84), and scored, on average, 3.52 (SD = 0.88,
on a five-point scale) on leisure time activity level. The sample included 95
females (61%; one participant had a missing value on gender). The number
of workdays varied between one and seven (mean = 3.99, SD = 1.29). Per
workday, participants on average sat for 5.31 h (SD = 1.92 h) and were active
for 2.18 h (SD = 1.79 h).

Measures. Sitting behavior is defined as “any waking behavior characterized
by an energy expenditure of ≤1.5 metabolic equivalents (METs), while in a
sitting, reclining or lying posture” (9). In this study, we distinguished be-
tween sitting behavior and activity, referring to all nonsitting behavior.
Sitting behavior and activity were assessed using an activPAL monitor, a
device that is worn on the thigh that directly assesses posture using triaxial
accelerometry. ActivPAL monitors are known to have a good reliability and
validity to measure sitting and activity behavior (see ref. 53 for more in-
formation on the activPAL monitor). Placement was standardized to the
anterior midline of the upper right thigh, with monitors inserted into a
flexible waterproof sleeve and attached using a hypoallergenic waterproof
adhesive strip (3M Tegaderm). Time of day, in hours since midnight (pre-
cision in seconds), was calculated from the time variable in the activPAL
data. Activity in last 5 h, in minutes (precision in seconds), was calculated as
the sum of all active (nonsitting) time in the 5 h prior to the previous
stand-to-sit or sit-to-stand transition, per participant, per day. This variable
was calculated before exclusion of nonwork hours, such that we also took
into account activity accumulated in the hours prior to starting the workday.
BMI was calculated following an anthropometric assessment. Stature was
measured to the nearest 0.1 cm using a portable stadiometer, and body mass
was measured to the nearest 0.1 kg using a calibrated mechanical flat scale.
BMI was calculated as mass divided by stature (kg/m2). Data on BMI were
available for 95 participants in the dataset (8,222 sit-to-stand and 8,172
stand-to-sit transitions). Age was assessed by self-report. Data on age were
available for 150 participants in the dataset (14,211 sit-to-stand and 14,102
stand-to-sit transitions). Leisure time activity level was assessed by self-report
on a scale from 1 (physically inactive) to 5 (physically active). Data on leisure
time activity level were available for 58 participants in the dataset (6,080
sit-to-stand and 6,020 stand-to-sit transitions).

Data Analysis.
Split-samples procedure. In this study, we used a split-samples cross-validation
procedure (30, 31). Prior to looking at the data, we randomly split the data
into two equal samples: A training sample (n = 79) and a testing sample (n =
77). As the data were combined out of several projects, we stratified data-
splitting on project. First, we used the training sample for data exploration
and fine-tuning of analytical decisions. Then, we designed and preregistered
a specific analysis plan for the testing sample. This preregistration (https://
osf.io/rbaqx/?view_only=da51924da62242d7a5808ede6192561a) described all
research questions, preregistered interpretations of results, all data-processing
steps (i.e., calculation of variables, data exclusion based on work times and
nonwear), all analyses, handling of assumptions, and convergence/singularity
issues. Unless otherwise mentioned, the main text of this paper reports pre-
registered analyses on the testing sample.

Data on the between-subjects predictors BMI, age, and leisure time ac-
tivity level were only available for part of the sample. We conducted a priori
sensitivity analyses (SI Appendix, SI Text) to determine the magnitude of the
effects that we could detect with a power of 0.80. Results from this sensi-
tivity analyses indicated that, given the sample sizes in our testing sample for
BMI, age, and leisure time activity level, we could detect medium to large
effects (hazard ratio [HR] ≈ 1.5 for positive associations; HR ≈ 0.7 for neg-
ative associations). However, based on our exploratory analyses on the
training sample, we expected only small (or null) effects. Therefore, we
decided to examine these predictors in an exploratory fashion, and to ex-
amine associations with these predictors on the full sample (training sample
+ testing sample), in order to provide the most precise effect size estimates,
given the data that we have.
Exclusion of nonworking hours. We excluded observations that fell outside of
participants’ working hours, using participants’ self-reported work start and
end times. First, we narrowed the work time window by 15 min on both start
and end times to correct for recall bias and settling into the building, and to
make sure that commuting time was not included in the dataset (see also
refs. 53 and 54). Next, we excluded observations that fell outside of the
narrowed work time window. For observations crossing work start or end
times, we only retained observations with at least 50% of the time inside the
(narrowed) work time window and excluded the rest (ref. 53; 75% of
transitions in the training sample; 76% of transitions in the testing sample).
After exclusion of nonwork times, 7,316 sit-to-stand and 7,263 stand-to-sit
transitions remained in the training sample, and 7,216 sit-to-stand and 7,158
stand-to-sit transitions remained in the testing sample.
Nonwear and extreme values. Sitting episodes with a duration longer than 8 h
were identified as nonwear (i.e., as a time period in which the participant did
not wear the activPAL monitor; ref. 53) and excluded from the analyses (one
observation in the training sample; no observations in the testing sample). In
addition, active episodes with a duration longer than 8 h were identified as
extreme values and excluded from the analyses (one observation in the
training sample; no observations in the testing sample).
Data preparation for time-to-event analysis. ActivPAL data were downloaded
from the monitors using activPAL software and saved in event-based sum-
mary files. Event-based data files contain one row for each episode of lying/
sitting and of standing, and for each step. Each row indicates the time the
episode begins (start time) and an activity code (sitting/lying down, stand-
ing, or stepping). For the current research, standing and stepping were
taken together as active. In order to prepare the data for time-to-event
analysis, we computed an event (sit-to-stand vs. stand-to-sit) variable and an
event time (in minutes; precision in seconds) variable (26, 29). The event time
variable contained the timing of the event since the previous event had
ended (i.e., since the person was at risk for the event to happen). To illus-
trate, for each sit-to-stand transition, the event time variable indicated how
long people had been sitting; for each stand-to-sit transition, the event time
variable indicated how long people had been standing.
Model fitting. All statistical analyses were performed in R version 3.6.1, using
the survival package (55). For each research question, we fit a separate
shared frailty Cox model (see SI Appendix, SI Text for model equations) on
the event times for the transition of interest (posture transitions; sit-to-stand
transition; or stand-to-sit transition), using the coxph function. We used the
Cox approach because 1) it is a well-established approach for event data
measured in continuous time (27), and 2) it provides robust estimates
without requiring a priori knowledge about the exact shape of the hazard
function (26, 29). In each model, we included the predictor of interest (time
of day, activity in last 5 h, age, BMI, or leisure time activity level). We also
included a frailty term for participant, which is comparable to a random
intercept in linear mixed-level models. The frailty term captures the random
variability in baseline hazard between individuals. We used Efron’s method
for handling ties (27). Where we conducted separate analyses for sit-to-
stand transitions and stand-to-sit transitions, we split the data into two
datasets: one including only event times for sit-to-stand transitions and one
including only event times for stand-to-sit transitions. For each model, we
interpreted the statistical significance of the fixed effect. If this effect was
statistically significant, we interpreted the HR (antilog of the raw coefficient)
of the predictor. Furthermore, to aid interpretation, we calculated median
survival times, which is the event time at which 50% of the events have
happened, based on model predictions for different values of the predictor.
In addition, we examined estimated survival functions (i.e., proportion of
events that has not happened yet as a function of time). In Figs. 1 and 2, we
zoomed in on event times between 0 min and 120 min to better visualize the
differences in survival function for different levels of the predictor. As a
result, in Fig. 1, 0.29% of the posture transitions were excluded; in Fig. 2,
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0.26% of the sit-to-stand transitions and 0.32% of the stand-to-sit transi-
tions were excluded.

For each model, assumptions for multilevel time-to-event analysis were
assessed following our preregistered analysis plan. Visual inspection of his-
tograms indicated no concerns regarding the distribution of predictor vari-
ables. Examination of deviance residuals and score residuals (27) indicated

no concerns regarding influential cases. For each model, the proportionality
assumption was met, based on examination of Schoenfeld residuals (27).

Data Availability. All data that we used for our analyses, and R code for data
processing, analysis, and visualization, are available in EASY at https://easy.
dans.knaw.nl/ui/datasets/id/easy-dataset:161600 (56).
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